Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.814
Filtrar
1.
PeerJ ; 12: e17018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618571

RESUMO

The African leopard (Panthera pardus pardus) has lost a significant proportion of its historical range, notably in north-western Africa and South Africa. Recent studies have explored the genetic diversity and population structure of African leopards across the continent. A notable genetic observation is the presence of two divergent mitochondrial lineages, PAR-I and PAR-II. Both lineages appeared to be distributed widely, with PAR-II frequently found in southern Africa. Until now, no study has attempted to date the emergence of either lineage, assess haplotype distribution, or explore their evolutionary histories in any detail. To investigate these underappreciated questions, we compiled the largest and most geographically representative leopard data set of the mitochondrial NADH-5 gene to date. We combined samples (n = 33) collected in an altitudinal transect across the Mpumalanga province of South Africa, where two populations of leopard are known to be in genetic contact, with previously published sequences of African leopard (n = 211). We estimate that the maternal PAR-I and PAR-II lineages diverged approximately 0.7051 (0.4477-0.9632) million years ago (Ma). Through spatial and demographic analyses, we show that while PAR-I underwent a mid-Pleistocene population expansion resulting in several closely related haplotypes with little geographic structure across much of its range, PAR-II remained at constant size and may even have declined slightly in the last 0.1 Ma. The higher genetic drift experienced within PAR-II drove a greater degree of structure with little haplotype sharing and unique haplotypes in central Africa, the Cape, KwaZulu-Natal and the South African Highveld. The phylogeographic structure of PAR-II, with its increasing frequency southward and its exclusive occurrence in south-eastern South Africa, suggests that this lineage may have been isolated in South Africa during the mid-Pleistocene. This hypothesis is supported by historical changes in paleoclimate that promoted intense aridification around the Limpopo Basin between 1.0-0.6 Ma, potentially reducing gene flow and promoting genetic drift. Interestingly, we ascertained that the two nuclear DNA populations identified by a previous study as East and West Mpumalanga correspond to PAR-I and PAR-II, respectively, and that they have come into secondary contact in the Lowveld region of South Africa. Our results suggest a subdivision of African leopard mtDNA into two clades, with one occurring almost exclusively in South Africa, and we identify the potential environmental drivers of this observed structure. We caution that our results are based on a single mtDNA locus, but it nevertheless provides a hypothesis that can be further tested with a dense sample of nuclear DNA data, preferably whole genomes. If our interpretation holds true, it would provide the first genetic explanation for the smaller observed size of leopards at the southernmost end of their range in Africa.


Assuntos
Panthera , Animais , Panthera/genética , África do Sul , Evolução Biológica , Deriva Genética , DNA Mitocondrial/genética
2.
PLoS Biol ; 22(4): e3002580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607979

RESUMO

Endosymbiosis drives evolutionary innovation and underpins the function of diverse ecosystems. The mechanistic origins of symbioses, however, remain unclear, in part because early evolutionary events are obscured by subsequent evolution and genetic drift. This Essay highlights how experimental studies of facultative, host-switched, and synthetic symbioses are revealing the important role of fitness trade-offs between within-host and free-living niches during the early-stage evolution of new symbiotic associations. The mutational targets underpinning such trade-offs are commonly regulatory genes, such that single mutations have major phenotypic effects on multiple traits, thus enabling and reinforcing the transition to a symbiotic lifestyle.


Assuntos
Ecossistema , Simbiose , Simbiose/genética , Exercício Físico , Deriva Genética , Mutação/genética
3.
BMC Ecol Evol ; 24(1): 45, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622503

RESUMO

BACKGROUND: A major goal in evolutionary biology is to understand the processes underlying phenotypic variation in nature. Commonly, studies have focused on large interconnected populations or populations found along strong environmental gradients. However, studies on small fragmented populations can give strong insight into evolutionary processes in relation to discrete ecological factors. Evolution in small populations is believed to be dominated by stochastic processes, but recent work shows that small populations can also display adaptive phenotypic variation, through for example plasticity and rapid adaptive evolution. Such evolution takes place even though there are strong signs of historical bottlenecks and genetic drift. Here we studied 24 small populations of the freshwater fish Arctic charr (Salvelinus alpinus) found in groundwater filled lava caves. Those populations were found within a few km2-area with no apparent water connections between them. We studied the relative contribution of neutral versus non-neutral evolutionary processes in shaping phenotypic divergence, by contrasting patterns of phenotypic and neutral genetic divergence across populations in relation to environmental measurements. This allowed us to model the proportion of phenotypic variance explained by the environment, taking in to account the observed neutral genetic structure. RESULTS: These populations originated from the nearby Lake Mývatn, and showed small population sizes with low genetic diversity. Phenotypic variation was mostly correlated with neutral genetic diversity with only a small environmental effect. CONCLUSIONS: Phenotypic diversity in these cave populations appears to be largely the product of neutral processes, fitting the classical evolutionary expectations. However, the fact that neutral processes did not explain fully the phenotypic patterns suggests that further studies can increase our understanding on how neutral evolutionary processes can interact with other forces of selection at early stages of divergence. The accessibility of these populations has provided the opportunity for long-term monitoring of individual fish, allowing tracking how the environment can influence phenotypic and genetic divergence for shaping and maintaining diversity in small populations. Such studies are important, especially in freshwater, as habitat alteration is commonly breaking populations into smaller units, which may or may not be viable.


Assuntos
Ecossistema , Deriva Genética , Animais , Truta/genética
4.
Ecol Lett ; 27(3): e14390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549267

RESUMO

Chance pervades life. In turn, life histories are described by probabilities (e.g. survival and breeding) and averages across individuals (e.g. mean growth rate and age at maturity). In this study, we explored patterns of luck in lifetime outcomes by analysing structured population models for a wide array of plant and animal species. We calculated four response variables: variance and skewness in both lifespan and lifetime reproductive output (LRO), and partitioned them into contributions from different forms of luck. We examined relationships among response variables and a variety of life history traits. We found that variance in lifespan and variance in LRO were positively correlated across taxa, but that variance and skewness were negatively correlated for both lifespan and LRO. The most important life history trait was longevity, which shaped variance and skew in LRO through its effects on variance in lifespan. We found that luck in survival, growth, and fecundity all contributed to variance in LRO, but skew in LRO was overwhelmingly due to survival luck. Rapidly growing populations have larger variances in LRO and lifespan than shrinking populations. Our results indicate that luck-induced genetic drift may be most severe in recovering populations of species with long mature lifespan and high iteroparity.


Assuntos
Traços de História de Vida , Reprodução , Humanos , Animais , Reprodução/genética , Fertilidade , Deriva Genética , Longevidade/fisiologia
5.
Curr Biol ; 34(7): 1576-1586.e5, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479386

RESUMO

Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.


Assuntos
Girafas , Animais , Girafas/genética , Ruminantes/genética , Evolução Biológica , Filogenia , Deriva Genética
6.
Elife ; 132024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470242

RESUMO

Most eukaryotic genes undergo alternative splicing (AS), but the overall functional significance of this process remains a controversial issue. It has been noticed that the complexity of organisms (assayed by the number of distinct cell types) correlates positively with their genome-wide AS rate. This has been interpreted as evidence that AS plays an important role in adaptive evolution by increasing the functional repertoires of genomes. However, this observation also fits with a totally opposite interpretation: given that 'complex' organisms tend to have small effective population sizes (Ne), they are expected to be more affected by genetic drift, and hence more prone to accumulate deleterious mutations that decrease splicing accuracy. Thus, according to this 'drift barrier' theory, the elevated AS rate in complex organisms might simply result from a higher splicing error rate. To test this hypothesis, we analyzed 3496 transcriptome sequencing samples to quantify AS in 53 metazoan species spanning a wide range of Ne values. Our results show a negative correlation between Ne proxies and the genome-wide AS rates among species, consistent with the drift barrier hypothesis. This pattern is dominated by low abundance isoforms, which represent the vast majority of the splice variant repertoire. We show that these low abundance isoforms are depleted in functional AS events, and most likely correspond to errors. Conversely, the AS rate of abundant isoforms, which are relatively enriched in functional AS events, tends to be lower in more complex species. All these observations are consistent with the hypothesis that variation in AS rates across metazoans reflects the limits set by drift on the capacity of selection to prevent gene expression errors.


Assuntos
Processamento Alternativo , Splicing de RNA , Animais , Deriva Genética , Isoformas de Proteínas , RNA Mensageiro/genética
7.
Elife ; 122024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470231

RESUMO

Phenotypic plasticity facilitates organismal invasion of novel environments, and the resultant phenotypic change may later be modified by genetic change, so called 'plasticity first.' Herein, we quantify gene expression plasticity and regulatory adaptation in a wild bird (Eurasian Tree Sparrow) from its original lowland (ancestral stage), experimentally implemented hypoxia acclimation (plastic stage), and colonized highland (colonized stage). Using a group of co-expressed genes from the cardiac and flight muscles, respectively, we demonstrate that gene expression plasticity to hypoxia tolerance is more often reversed than reinforced at the colonized stage. By correlating gene expression change with muscle phenotypes, we show that colonized tree sparrows reduce maladaptive plasticity that largely associated with decreased hypoxia tolerance. Conversely, adaptive plasticity that is congruent with increased hypoxia tolerance is often reinforced in the colonized tree sparrows. Genes displaying large levels of reinforcement or reversion plasticity (i.e. 200% of original level) show greater genetic divergence between ancestral and colonized populations. Overall, our work demonstrates that gene expression plasticity at the initial stage of high-elevation colonization can be reversed or reinforced through selection-driven adaptive modification.


Assuntos
Adaptação Fisiológica , Pardais , Animais , Adaptação Fisiológica/genética , Deriva Genética , Coração , Hipóxia , Pardais/genética , Expressão Gênica
8.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473952

RESUMO

The genetic diversity analysis of six dog breeds, including Ca de Bestiar (CB), Ca de Bou (CBOU), Podenco Ibicenco (PI), Ca Rater (CR), Ca Mè (CM), and Ca de Conills (CC), reveals insightful findings. CB showcases the highest mean number of alleles (6.17) and heterozygosity values, with significant deviations from Hardy-Weinberg equilibrium (HWE) observed in five markers, indicating high intra-racial genetic diversity (average observed heterozygosity (Ho) = 0.754, expected heterozygosity (He) = 0.761). In contrast, CBOU presents the lowest mean number of alleles (5.05) and heterozygosity values, coupled with moderate polymorphic information content (PIC) values and a moderate level of intra-racial genetic diversity (average Ho = 0.313, He = 0.394). PI demonstrates moderate genetic diversity with an average of 5.75 alleles and highly informative PIC values, while CR displays robust genetic diversity with an average of 6.61 alleles and deviations from equilibrium, indicating potential risks of inbreeding (average Ho = 0.563, He = 0.658). CM exhibits moderate genetic diversity and deviations from equilibrium, similar to CBOU, with an average of 6.5 alleles and moderate PIC values (average Ho = 0.598, He = 0.676). Conversely, CC shows a wider range of allelic diversity and deviations from equilibrium (average Ho = 0.611, He = 0.706), suggesting a more diverse genetic background. Inter-racial analysis underscores distinct genetic differentiation between breeds, emphasizing the importance of informed breeding decisions and proactive genetic management strategies to preserve diversity, promote breed health, and ensure long-term sustainability across all breeds studied.


Assuntos
Variação Genética , Repetições de Microssatélites , Animais , Cães , Endogamia , Deriva Genética , Marcadores Genéticos , Alelos , Biologia Molecular
9.
Mol Ecol ; 33(7): e17310, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441401

RESUMO

Understanding the processes that underlie the development of population genetic structure is central to the study of evolution. Patterns of genetic structure, in turn, can reveal signatures of isolation by distance (IBD), barriers to gene flow, or even the genesis of speciation. However, it is unclear how severe range restriction might impact the processes that dominate the development of genetic structure. In narrow endemic species, is population structure likely to be adaptive in nature, or rather the result of genetic drift? In this study, we investigated patterns of genetic diversity and structure in the narrow endemic Hayden's ringlet butterfly. Specifically, we asked to what degree genetic structure in the Hayden's ringlet can be explained by IBD, isolation by resistance (IBR) (in the form of geographic or ecological barriers to migration between populations), and isolation by environment (in the form of differences in host plant availability and preference). We employed a genotyping-by-sequencing (GBS) approach coupled with host preference assays, Bayesian modelling, and population genomic analyses to answer these questions. Our results suggest that despite their restricted range, levels of genetic diversity in the Hayden's ringlet are comparable to those seen in more widespread butterfly species. Hayden's ringlets showed a strong preference for feeding on grasses relative to sedges, but neither larval preference nor potential host availability at sampling sites correlated with genetic structure. We conclude that geography, in the form of IBR and simple IBD, was the major driver of contemporary patterns of differentiation in this narrow endemic species.


Assuntos
Borboletas , Variação Genética , Animais , Borboletas/genética , Teorema de Bayes , Deriva Genética , Geografia , Genética Populacional
10.
Mol Ecol ; 33(7): e17311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468155

RESUMO

Urbanisation is occurring globally, leading to dramatic environmental changes that are altering the ecology and evolution of species. In particular, the expansion of human infrastructure and the loss and fragmentation of natural habitats in cities is predicted to increase genetic drift and reduce gene flow by reducing the size and connectivity of populations. Alternatively, the 'urban facilitation model' suggests that some species will have greater gene flow into and within cities leading to higher diversity and lower differentiation in urban populations. These alternative hypotheses have not been contrasted across multiple cities. Here, we used the genomic data from the GLobal Urban Evolution project (GLUE), to study the effects of urbanisation on non-adaptive evolutionary processes of white clover (Trifolium repens) at a global scale. We found that white clover populations presented high genetic diversity and no evidence of reduced Ne linked to urbanisation. On the contrary, we found that urban populations were less likely to experience a recent decrease in effective population size than rural ones. In addition, we found little genetic structure among populations both globally and between urban and rural populations, which showed extensive gene flow between habitats. Interestingly, white clover displayed overall higher gene flow within urban areas than within rural habitats. Our study provides the largest comprehensive test of the demographic effects of urbanisation. Our results contrast with the common perception that heavily altered and fragmented urban environments will reduce the effective population size and genetic diversity of populations and contribute to their isolation.


Assuntos
Deriva Genética , Urbanização , Humanos , Cidades , Ecossistema , Demografia
11.
Sci Rep ; 14(1): 6988, 2024 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523175

RESUMO

Habitat fragmentation has led to a reduction in the geographic distribution of species, making small populations vulnerable to extinction due to environmental, demographic, and genetic factors. The wild plant Chieniodendron hainanense, a species with extremely small populations, is currently facing endangerment and thus requires urgent conservation efforts. Understanding its genetic diversity is essential for uncovering the underlying mechanisms of its vulnerability and for developing effective conservation strategies. In our study, we analyzed 35 specimens from six different populations of C. hainanense using genotyping-by-sequencing (GBS) and single nucleotide polymorphism (SNP) methodologies. Our findings indicate that C. hainanense has limited genetic diversity. The observed heterozygosity across the populations ranged from 10.79 to 14.55%, with an average of 13.15%. We categorized the six populations of C. hainanense into two distinct groups: (1) Diaoluoshan and Baishaling, and (2) Wuzhishan, Huishan, Bawangling, and Jianfengling. The genetic differentiation among these populations was found to be relatively weak. The observed loss of diversity is likely a result of the effects of natural selection.


Assuntos
Espécies em Perigo de Extinção , Genética Populacional , Animais , Deriva Genética , Ecossistema , Polimorfismo de Nucleotídeo Único , Variação Genética
12.
Nat Commun ; 15(1): 2122, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459017

RESUMO

Speciation is a continuous process driven by genetic, geographic, and ecological barriers to gene flow. It is widely investigated in multicellular eukaryotes, yet we are only beginning to comprehend the relative importance of mechanisms driving the emergence of barriers to gene flow in microbial populations. Here, we explored the diversification of the nearly ubiquitous soil cyanobacterium Microcoleus. Our dataset consisted of 291 genomes, of which 202 strains and eight herbarium specimens were sequenced for this study. We found that Microcoleus represents a global speciation continuum of at least 12 lineages, which radiated during Eocene/Oligocene aridification and exhibit varying degrees of divergence and gene flow. The lineage divergence has been driven by selection, geographical distance, and the environment. Evidence of genetic divergence and selection was widespread across the genome, but we identified regions of exceptional differentiation containing candidate genes associated with stress response and biosynthesis of secondary metabolites.


Assuntos
Deriva Genética , Especiação Genética , Fluxo Gênico , Genoma , Filogenia
13.
Sci Rep ; 14(1): 5364, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438787

RESUMO

Balancing selection has been shown to be common in plants for several different types of traits, such as self-incompatibility and heterostyly. Generally, for these traits balancing selection is generated by interactions among individuals or between individuals and other species (e.g., pathogens or pollinators). However, there are phenotypic polymorphisms in plants that do not obviously involve types of interactions that generate balancing selection. Little is known about the extent to which balancing selection also acts to preserve these polymorphisms. Here we ask whether balancing selection preserves an anther-color polymorphism in Erythronium umbilicatum (Liliaceae). We identified a major gene underlying this polymorphism. We then attempted to detect signatures of balancing selection on that gene by developing a new coalescence test for balancing selection. We found that variation in anther color is in large part caused by variation in a paralog of EuMYB3, an anthocyanin-regulating R2R3-MYB transcription factor. However, we found little evidence for balancing selection having acted historically on EuMYB3. Our results thus suggest that plant polymorphisms, especially those not involved in interactions that are likely to generate negative frequency-dependent selection, may reflect a transient state in which one morph will eventually be fixed by either genetic drift or directional selection. Our results also suggest that regulation of the anthocyanin pathway is more evolutionarily labile than is generally believed.


Assuntos
Genes myb , Liliaceae , Humanos , Antocianinas/genética , Polimorfismo Genético , Deriva Genética
14.
Mol Phylogenet Evol ; 195: 108063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493988

RESUMO

Reef-building corals provide the structural basis for one of Earth's most spectacular and diverse but increasingly threatened ecosystems. The reef-building coral genus Acropora may have undergone substantial speciation during the Pleistocene climate and sea-level changes. Here, we aimed to evaluate the speciation history of four morphologically similar tabular Acropora species (Acropora aff. hyacinthus, A. cf. bifurcata, A. cf. cytherea, and A. cf. subulata) using an integrative approach with morphology, genetic, and reproduction methodology. Extensive morphological analyses showed that these four species are distinct and exhibited high gamete incompatibility, preventing hybridization. Furthermore, population structure and principal component analyses with SNPs (>60,000) indicated that these species were genetically distinct, and the ABBA-BABA test did not support introgression among these species. Many of their coding and noncoding RNA sequences showed high genetic variance at loci with high Fst values along the genome. Comparison of these orthologs with those of other Acropora species suggested that many of these genes are under positive selection, which could be associated with spawning time, gamete, and morphological divergence. Our findings show that the speciation of tabular Acropora occurred without hybridization, and the divergence accompanying the rapid evolution of genes in species-rich Acropora could be associated with speciation.


Assuntos
Antozoários , Ecossistema , Animais , Filogenia , Antozoários/genética , Deriva Genética , Hibridização Genética , Especiação Genética
15.
Mol Ecol ; 33(8): e17329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533805

RESUMO

Patterns of pathogen prevalence are, at least partially, the result of coevolutionary host-pathogen interactions. Thus, exploring the distribution of host genetic variation in relation to infection by a pathogen within and across populations can provide important insights into mechanisms of host defence and adaptation. Here, we use a landscape genomics approach (Bayenv) in conjunction with genome-wide data (ddRADseq) to test for associations between avian malaria (Plasmodium) prevalence and host genetic variation across 13 populations of the island endemic Berthelot's pipit (Anthus berthelotii). Considerable and consistent spatial heterogeneity in malaria prevalence was observed among populations over a period of 15 years. The prevalence of malaria infection was also strongly positively correlated with pox (Avipoxvirus) prevalence. Multiple host loci showed significant associations with malaria prevalence after controlling for genome-wide neutral genetic structure. These sites were located near to or within genes linked to metabolism, stress response, transcriptional regulation, complement activity and the inflammatory response, many previously implicated in vertebrate responses to malarial infection. Our findings identify diverse genes - not just limited to the immune system - that may be involved in host protection against malaria and suggest that spatially variable pathogen pressure may be an important evolutionary driver of genetic divergence among wild animal populations, such as Berthelot's pipit. Furthermore, our data indicate that spatio-temporal variation in multiple different pathogens (e.g. malaria and pox in this case) may have to be studied together to develop a more holistic understanding of host pathogen-mediated evolution.


Assuntos
Malária Aviária , Passeriformes , Plasmodium , Animais , Malária Aviária/epidemiologia , Malária Aviária/genética , Plasmodium/genética , Deriva Genética , Passeriformes/genética , Genótipo
16.
J R Soc Interface ; 21(212): 20230619, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38442861

RESUMO

Historically Plasmodium falciparum has followed a pattern of drug resistance first appearing in low-transmission settings before spreading to high-transmission settings. Several features of low-transmission regions are hypothesized as explanations: higher chance of symptoms and treatment seeking, better treatment access, less within-host competition among clones and lower rates of recombination. Here, we test whether importation of drug-resistant parasites is more likely to lead to successful emergence and establishment in low-transmission or high-transmission periods of the same epidemiological setting, using a spatial, individual-based stochastic model of malaria and drug-resistance evolution calibrated for Burkina Faso. Upon controlling for the timing of importation of drug-resistant genotypes and examination of key model variables, we found that drug-resistant genotypes imported during the low-transmission season were (i) more susceptible to stochastic extinction due to the action of genetic drift, and (ii) more likely to lead to establishment of drug resistance when parasites are able to survive early stochastic loss due to drift. This implies that rare importation events are more likely to lead to establishment if they occur during a high-transmission season, but that constant importation (e.g. neighbouring countries with high levels of resistance) may produce a greater risk during low-transmission periods.


Assuntos
Deriva Genética , Plasmodium falciparum , Plasmodium falciparum/genética , Estações do Ano , Células Clonais , Genótipo
17.
Am Nat ; 203(3): 362-381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358813

RESUMO

AbstractA key question about macroevolutionary speciation rates is whether they are controlled by microevolutionary processes operating at the population level. For example, does spatial variation in population genetic differentiation underlie geographical gradients in speciation rates? Previous work suggests that speciation rates increase with elevation in Neotropical birds, but underlying population-level gradients remain unexplored. Here, we characterize elevational phylogeographic diversity between montane and lowland birds in the megadiverse Andes-Amazonian system and assess its relationship to speciation rates to evaluate the link between population-level differentiation and species-level diversification. We aggregated and georeferenced nearly 7,000 mitochondrial DNA sequences across 103 species or species complexes in the Andes and Amazonia and used these sequences to describe phylogeographic differentiation across both regions. Our results show increased levels of both discrete and continuous metrics of population structure in the Andean mountains compared with the Amazonian lowlands. However, higher levels of population differentiation do not predict higher rates of speciation in our dataset. Multiple potential factors may lead to our observed decoupling of initial population divergence and speciation rates, including the ephemerality of incipient species and the multifaceted nature of the speciation process, as well as methodological challenges associated with estimating rates of population differentiation and speciation.


Assuntos
Aves , DNA Mitocondrial , Animais , Filogenia , Filogeografia , Aves/genética , DNA Mitocondrial/genética , Deriva Genética , Especiação Genética
18.
Am Nat ; 203(3): 382-392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358811

RESUMO

AbstractModels of range expansion have independently explored fitness consequences of life history trait evolution and increased rates of genetic drift-or "allele surfing"-during spatial spread, but no previous model has examined the interactions between these two processes. Here, using spatially explicit simulations, we explore an ecologically complex range expansion scenario that combines density-dependent selection with allele surfing to asses the genetic and fitness consequences of density-dependent selection on the evolution of life history traits. We demonstrate that density-dependent selection on the range edge acts differently depending on the life history trait and can either diminish or enhance allele surfing. Specifically, we show that selection at the range edge is always weaker at sites affecting competitive ability (K-selected traits) than at sites affecting birth rate (r-selected traits). We then link differences in the frequency of deleterious mutations to differences in the efficacy of selection and rate of mutation accumulation across distinct life history traits. Finally, we demonstrate that the observed fitness consequences of allele surfing depend on the population density in which expansion load is measured. Our work highlights the complex relationship between ecology and expressed genetic load, which will be important to consider when interpreting both experimental and field studies of range expansion.


Assuntos
Traços de História de Vida , Evolução Biológica , Mutação , Deriva Genética , Ecologia , Seleção Genética , Modelos Genéticos
19.
PLoS One ; 19(2): e0298221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354179

RESUMO

Due to traditional classification methods' limitations, some cryptic species remain undiscovered. To better explore the existence of the Schrenck salamander (Salamandrella tridactyla, a cryptic species of Siberian salamander S. keyserlingii) in China, we conducted a molecular phylogenetic analysis to confirm the taxonomic relationship among Salamandrella species and investigate genetic variation. We used complete sequences of the mitochondrial COI gene from 65 specimens collected across a wide range in Northeastern China. Thirty-five haplotypes were obtained from six populations. They showed medium-high haplotype diversity (Hd) and low nucleotide polymorphism (π). The phylogenetic tree and haplotype network analysis revealed that populations from Greater Khingan Ridge (Huma: HM) and Lesser Khingan Ridge (Tieli: TL) belong to S. keyserlingii, while populations from Changbai Mountain (Shangzhi-zhuziying: SZ, Shangzhi-cuijia: SC, Hailin: HL, and Baishan: BS) belong to S. tridactyla. This indicates the monophyly of Salamandrella and each of the two species. There was a substantial level of genetic differentiation between different species and within populations of the same species. This differentiation was significantly related to geographical distance. At last, the mismatch distribution and neutrality analyses indicated that the TL populations have undergone expansion of history. The study supplements the distributional range of Schrenck salamander. And it provides a theoretical basis for species conservation of Salamandrella species.


Assuntos
Deriva Genética , Urodelos , Animais , Filogenia , Urodelos/genética , Genes Mitocondriais , China , Haplótipos , Variação Genética , DNA Mitocondrial/genética
20.
Biosystems ; 237: 105130, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309419

RESUMO

Drift, selection, and mutation are integral evolutionary factors. In this article, operator model is newly suggested to intuitively represent those evolutionary factors into mathematical operators, and to ultimately offer unconventional methodology for understanding evolutionary dynamics. To be specific, each of the drift, selection, and mutation was respectively interpreted as operator which in essence is a random matrix that acts upon the vector which contains population distribution information. The simulation results from the operator model coincided with the previous theoretical results for beneficial mutation accumulation rate in concurrent and successional regimes for asexually reproducing case. Furthermore, beneficial mutation accumulation in strong drift regime for asexually reproducing case was observed from the simulation while allowing the interactions of mutations with diverse selection coefficients. Lastly, methods to justify, reinforce, apply, and expand the operator model were discussed to scrutinize the implications of the model. With the operator model's unique characteristics, the model is expected to broaden perspective and to offer effective methodology for understanding the evolutionary process.


Assuntos
Deriva Genética , Seleção Genética , Evolução Biológica , Mutação , Simulação por Computador , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...